Transforming growth factor-beta1 promotes the morphological and functional differentiation of the myofibroblast.
نویسندگان
چکیده
The myofibroblast is responsible for the generation of contractile force associated with wound contraction and pathological contractures and is characterized by the presence of alpha-smooth muscle (alpha-sm) actin-containing stress fibers, vinculin-containing fibronexus adhesion complexes, and fibronectin fibrils containing the ED-A splice variant. Transforming growth factor-beta1 (TGF-beta1) can promote the expression of alpha-sm actin in myofibroblasts, but the functional significance of this increased expression is unclear. In this study, we demonstrate, using the stress-relaxed collagen lattice contraction assay, that TGF-beta1 promoted a dose-dependent increase in the generation of contractile force in myofibroblasts and a concomitant increase in the expression of alpha-sm actin. We also demonstrate that TGF-beta1 enhanced the formation of the structural elements important in myofibroblast contractile force generation and transmission, including stress fibers, vinculin-containing fibronexus adhesion complexes, and fibronectin fibrils, and that this enhancement occurred prior to, and independent of, alpha-sm actin expression. This differentiated myofibroblast phenotype was not stable. Removal of TGF-beta1 resulted in reduced expression of alpha-sm actin as well as a decreased assembly of stress fibers and vinculin-containing adhesion complexes; however, there was no reduction in fibronectin fibrils. We conclude that TGF-beta1 promotes the morphological and functional differentiation of the myofibroblast by first enhancing the formation of the structural elements characteristic of the myofibroblast followed by increased expression of alpha-sm actin and contractile force generation.
منابع مشابه
Valvular myofibroblast activation by transforming growth factor-beta: implications for pathological extracellular matrix remodeling in heart valve disease.
The pathogenesis of cardiac valve disease correlates with the emergence of muscle-like fibroblasts (myofibroblasts). These cells display prominent stress fibers containing alpha-smooth muscle actin (alpha-SMA) and are believed to differentiate from valvular interstitial cells (VICs). However, the biological factors that initiate myofibroblast differentiation and activation in valves remain unid...
متن کاملInvolvement of CTGF in TGF-beta1-stimulation of myofibroblast differentiation and collagen matrix contraction in the presence of mechanical stress.
PURPOSE This study was undertaken to investigate the role of connective tissue growth factor (CTGF) in fibroblast-to-myofibroblast differentiation and fibroblast-mediated collagen matrix contraction in the presence of mechanical stress. METHODS An in vitro three-dimensional contraction model of human corneal-fibroblast-seeded collagen lattices (FSCLs) in the presence of mechanical stress gene...
متن کاملTGF-b-induced differentiation into myofibroblasts involves specific regulation of two MKL1 isoforms
Cellular transformation into myofibroblasts is a central physiological process enabling tissue repair. Its deregulation promotes fibrosis and carcinogenesis. TGF-b is the main inducer of the contractile gene program that drives myofibroblast differentiation from various precursor cell types. Crucial regulators of this transcriptional program are serum response factor (SRF) and its cofactor MKL1...
متن کاملOsteopontin expression is required for myofibroblast differentiation.
Osteopontin (OPN) is a multifunctional cytokine that is strongly expressed in healing wounds and fibrotic lesions, both of which are characterized by the formation of myofibroblasts. We examined the role of OPN in myofibroblast differentiation induced by the profibrotic cytokine transforming growth factor-beta1. In cultured cardiac or dermal fibroblasts treated with transforming growth factor-b...
متن کاملPGE(2) inhibition of TGF-beta1-induced myofibroblast differentiation is Smad-independent but involves cell shape and adhesion-dependent signaling.
Myofibroblasts are pathogenic in pulmonary fibrotic disease due to their exuberant production of matrix rich in collagen that interferes with gas exchange and the ability of these cells to contract and distort the alveolar space. Transforming growth factor-beta1 (TGF-beta1) is a well-known inducer of myofibroblast differentiation. TGF-beta1-induced transformation of fibroblasts to apoptosis-res...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Experimental cell research
دوره 257 1 شماره
صفحات -
تاریخ انتشار 2000